REVIEW

Mammary ductoscopy: current status and future prospects

Kefah Mokbel¹,*, Pedro F. Escobard, Tadaharu Matsunagac

¹St George's Hospital, Blackshaw Road, London SW17 0QT, UK
²The Cleveland Clinic Foundation, USA
³Minami Aoyama Breastopia Clinic, Tokyo, Japan

Accepted for publication 8 October 2004

Abstract Background. Mammary ductoscopy (MD) allows direct visualisation of the mammary ducts using sub-millimetre fiberoptic microendoscopes inserted through the ductal opening onto the nipple surface. The sharp clear magnified images are viewed on a video monitor. Such scopes have working channels that allow irrigation and ductal lavage for cytological analysis. MD can be performed under local anaesthesia in the office setting. This article reviews the evolving role of MD in the diagnosis and treatment of intraductal breast disease.

Methods. A literature search was carried out from Pubmed for indexed articles published over the last 30 years using the keywords 'mammary ductoscopy' and 'breast ductoscopy'.

Results. The search yielded 27 indexed published articles and reports. Important major reports and studies were reviewed, screened and tracked for other relevant publications. The most important articles were analysed and discussed. The review also includes our published and unpublished original work in the field of MD.

Conclusions. MD is a useful diagnostic adjunct in patients with pathological nipple discharge (PND). Furthermore, it can reduce the number and extent of duct excision operations for PND. However, its potential use in the early detection of breast cancer, guiding breast conserving surgery (BCS) for cancer, therapeutic ablation of intraductal disease, and guiding risk-reducing strategies among high risk women requires further research and evaluation. Future developments include the development of a biopsy kit, combining MD with molecular diagnostic markers and real-time optical biopsy system for the diagnosis of pre-malignant and early malignant disease and radiofrequency for curative ablation of intraductal lesions.

© 2004 Published by Elsevier Ltd.

Introduction

The normal female adult breast is composed of two separate functional parts. One part is concerned with milk production and is known as the epithelial component.
The second part consists of all the other tissues that make up and support the breast including fat, fascia (connective tissue), vessels and muscle.

In the papilla of the nipple there is a parallel bundle of 11-48 central ducts (median 27, interquartile range 21-30) although not all of them necessarily open onto the surface of the nipple. The number varies with disease and different stages of development and is increased at puberty, in pregnancy and lactation and reduced after the menopause and due to disease. Each of these segmental (main) ducts drains milk from different segments of the breast. Each segmental duct, branches into sub segmental first, second, third, fourth, fifth and sixth branches, finally forming the terminal duct-lobular unit (TDLU) which are also formed from lower-order branches. This TDLU is comprised of the extralobular terminal ducts, intralobular terminal ducts and the ductules. The intralobular terminal duct and the ductules then constitute a lobule. Studies have shown that normal mammary epithelium anatomically located in the TDLU is biologically associated with malignant change.1–3 Going et al. demonstrated that in an autopsy breast, the largest duct system drained 23% of breast volume; half of the breast was drained by three ducts and 75% by the largest six central ducts.1 The authors also described a 3D digital model of all collecting ducts in a mastectomy nipple using 68 100 microm serial sections. This revealed three distinct nipple duct populations. Seven ducts maintained a wide lumen up to the skin surface (population A); 20 ducts tapered to a minute lumen at the apex of the nipple within 1 mm from the skin surface (population B); and a minor duct population (seven ducts) arose at the base of the papilla (population C).1 The authors observed no significant communications between the ducts. This important study suggests that only the first population of ducts (population A), which drained 75% of the breast volume, is accessible to MD. Further, research is required to establish whether anastomoses exist between the various ducts and how frequently neoplasia affects the different duct populations. Understanding this anatomical arrangement of the mammary ducts is important in the context of MD.

It is thought that 85% of pre-malignant and malignant breast lesions originate in the epithelial lining of the mammary ducts or lobules.1–3 Yet until recently, we have not had direct access to this area other than removing tissue by core biopsy or fine needle aspiration. Furthermore, conventional imaging modalities such as mammography and ultrasonography are associated with significant false negative results.4 These observations made it logical to explore the role of endoscopic visualisation of the mammary duct system.

MD has been evolving over the last 15 years.5–10 The earlier attempts were constrained by limited optics, large calibre scopes and lack of working channels for insufflation and biopsy under direct visualisation.5–8 Furthermore, the images generated by the earlier scopes were too small and imprecise for accurate clinical judgement.

Recent technological advances in endoscopic techniques, however, have overcome many of these obstacles. The current generation of microendoscopes (rigid or flexible) use excellent fibreoptics and measure between 0.9 and 1.2 mm in external diameter.5,10 Such microendoscopes allow surgeons to magnify breast tissue up to 60 times the normal size and pinpoint small lesions and can be gradually moved into peripheral sites. They also yield large, clear and sharp video images of the mammary duct system and provide working channels for insufflation, extraction of tissue for diagnosis and possible therapeutic intervention (Fig. 1).

The endoscope is inserted through the ductal opening on the nipple surface after dilating the duct with a suitable probe (e.g. Bowmann’s lacrimal dilators). Saline solution is injected into the duct through the working channel in order to widen it and facilitate the passage of the endoscope for clear visualisation of the intraductal space. The optical viewing and endoscopic system magnifies breast tissue up to 60 times its actual size and allows the identification of breast lesions up to 1/100th the size of those detected with conventional mammography and magnetic resonance imaging (MRI). The procedure can be performed under local anaesthesia (topical local anaesthetic

![Figure 1](Image) A breast ductoscope with a 1 mm external diameter and a 0.45 mm working channel.
Papilloma is the commonest pathological finding in women attending symptomatic breast clinics.11 Symptom accounting for approximately 5\% of all underlying pathology. PND is a relatively common discharge fluid usually fail to demonstrate the underlying pathology. MD offers the advantages of accurate localisation of pathology, ductal lavage under direct visualisation, and intraoperative guidance especially for lesions deep within the ductal system.12 In addition to visualising intraductal lesions, cytological analysis of endoscopically retrieved ductal lavage has been recently reported to be more accurate than simple discharge cytology (5,9,10). In a cohort of 415 patients with PND, ductoscopy was successful in visualising an intraductal lesion in 166 patients (40\%). In these cases, ductal lavage following ductoscopy increased the yield of cytologically interpretable ductal epithelial cells 100-fold compared to discharge fluid alone.10 The authors also reported that of the 11 cases of DCIS that were initially detected with a combination of MD and ductal lavage cytology, six were completely negative on clinical examination and mammography.

Dietz et al. reported that duct cannulation was achieved in 105 (88\%) of 119 patients with PND and ductoscopy directed duct excision could be performed in 104 (87\%) of 119 cases. These authors also found that MD was more accurate than preoperative ductography (90 vs 76\%) in localising the relevant pathology. The pathological diagnoses were malignancy in five patients, papilloma in 84 cases, and hyperplasia in 16. In 22 patients, ductoscopy visualised multiple lesions or abnormalities beyond 4 cm. Such lesions would have been missed by blind duct excision.

Okazaki et al.7 performed MD in 46 patients with PND using two kinds of silicafiber scopes with outer diameters of 0.80 and 0.45 mm. The authors observed that the internal surface of a normal duct was lustrous and smooth, whereas cancer arising from the epithelial lining of the mammary ducts appeared white and was slightly elevated, forming a bridging structure. Intraductal papillomas formed intraductal solid nodules, being yellow in most cases and red at the site of haemorrhage (Fig. 2).

Our group performed MD in 315 patients with PND.13 This study evaluated the use of MD in not only diagnosing intraductal lesions such as DCIS and papillomas but also in the treatment of intraductal papillomas. In this study carcinoma was recognised by MD in 38 (81\%) of 47 cases and intraductal papilloma lesions in 115 (96.6\%) of 119 cases. The shape of the lesions seen was classified as hemispheric, papillary and flat protrusion type. The hemispheric and papillary shapes were most common in cases of intraductal papilloma and the flat protrusion type was most common in cases of carcinoma. We performed intraductal biopsies of 69 papillomas and obtained adequate tissue material for histological diagnosis in 52 (75.4\%) cases. Furthermore, we observed therapeutic effectiveness in 82.6\% of cases biopsied during follow-up.

Dooley et al.14 used a 0.9 mm microendoscope in 27 patients who were undergoing nipple exploration for spontaneous haemocutaneous positive PND. In 26 (96\%) of 27 patients, the endoscope was successfully introduced into the lactiferous sinus, and the proximal mammary ducts were successfully visualised. A lesion accounting for the bleeding was seen in all 26 patients with 70\% having multiple intraluminal defects. DCIS was identified in two cases and in both cases there was a more proximal papilloma in the same ductal system. In three other cases both papilloma and atypical hyperplasia were present. Although most lesions are located within 3 cm from the nipple, some lesions identified extended up to 7.5 cm deep to the nipple.14 The deepest endoscopically identified lesion was carcinoma in a patient with normal mammography and ultrasound.

Simple light transillumination through the skin during MD can be used to guide duct excision. We have recently described a new technique involving ductoscopy and the use of a blue dye to perform microdochectomy.15 MD can also potentially reduce the need to perform duct excision in patients with...
PND due to benign disease thus resulting in cost savings.

MD and breast cancer

Since 85% or more of breast cancers originate in the epithelial lining of mammary ducts from morphologically identifiable precursor lesions, therefore MD can potentially detect breast cancer several years before detection\(^1\) by mammography. Shen et al. reported that of the 11 cases of DCIS that were initially detected with a combination of MD and ductal lavage cytology in women with PND, six (54%) were completely negative on mammography and physical examination.\(^1\)

However, this potential role of MD in the early detection of breast cancer will be enhanced by the development of a biopsy kit that allows adequate microbiopsy for histological diagnosis.

The intraductal approach to breast cancer has been recently invigorated with series of papers exploring ductal based screening through nipple aspiration, ductal lavage and more recently ductoscopy.\(^6\) Ductal lavage is a minimally invasive procedure, which can detect cytological atypia via retrieval of breast ductal fluid. Despite the lack of reliable evidence supporting the role of ductal lavage, it is currently being used in several centres to guide risk-reducing strategies in high risk women.\(^1\) When frankly malignant cells are present in the lavage fluid, the diagnosis can be confirmed with mammography, ultrasound and/or magnetic resonance imaging (MRI). If these investigations are negative for malignancy then ductal imaging (ductography and/or MD) can be performed. Hence, MD can complement mammary ductal lavage in breast cancer screening but has the advantage of direct visualisation of intraductal pathology and obtaining a higher epithelial cell yield from the surface of the lesion. Although MD seems to be promising in the early detection of breast cancer\(^1,8,9\) and defining the presence and extent of proliferative disease in high risk patients and could potentially be a complementary screening procedure, there is a clear need to design prospective clinical trials evaluating its potential role in breast cancer screening and guiding risk-reducing strategies.

Dooley et al.\(^1\) used a flexible fibreoptic microendoscope in 55 women who were going to undergo partial mastectomy after having been diagnosed with ductal hyperplasia, DCIS, or invasive breast
cancer identified by conventional diagnostic tests. The index quadrant was massaged to express nipple discharge prior to endoscopy. The procedure was successful in 47 (85.5%) of 55 patients and the target lesion was identified by MD in 41 (75%) of 47 cases. Furthermore, the authors found more extensive disease than predicted by pre-operative assessment in 21 (45%) of 47 cases and these patients required a wider breast resection than previously anticipated. Randomised controlled trials are needed to validate such observations suggesting that MD can guide breast conserving surgery (BCS) and reduce the need for re-excision procedures, especially, in patients with DCIS.

The limitations

At present, breast cancer is believed to originate within the TDLUs, through succession of events involving DCIS. Therefore, visual and/or cytological examination of these structures would permit identification of abnormal lesions before the development of invasive disease. Although MD provides useful information regarding the ductal system, the procedure has several limitations. MD usually examines 1-2 ducts per breast and leaves the remaining approximately 13-18 ducts that open at the nipple of each breast unexamined.20 Although the main central ducts (median number = 7) draining 75% of the breast volume are accessible to MD,1 it is not currently known, however, whether these ducts are the commonest sites of neoplasia development.

MD permits direct visualisation of the lactiferous duct, lactiferous sinus, and the segmental duct and its main branches. However, its capability for direct observation of ducts in smaller calibre peripheral ducts and the TDLUs where the pre-malignant and malignant lesions often originate is limited by the outer diameter of the scope and the complex branching pattern of the mammary ducts thus limiting the sensitivity of the technique. Lumen occlusion by disease, scarring or sclerosis, false tract formation, and acute angulation of ductal branches are recognised causes of distal ductoscopy failure.5 In addition, the ductal washings during MD retrieves only one third of the fluid originally infused. Therefore, there is a considerable fraction of fluid and cells that remain trapped, probably within the smaller, more distally located ducts. Furthermore, ductoscopic cytology frequently reveals atypia in cases of papilloma,21 therefore, there is a need to develop a reliable biopsy technique that accurately establishes the histological diagnosis. Badve et al.20 examined 801 mastectomy specimens, and found that 14% of intraductal carcinoma did not have an in situ component. These findings were even lower than that reported in a study undertaken by the national surgical adjuvant breast and bowel project (NSABP), which examined almost 1000 mastectomies and found the absence of an in situ component in > 30% of cases.22 Whether the lack of a demonstrable in situ component is a result of it being overrun by the invasive process or due to its genuine absence is a matter of speculation. These observations raise the possibility that a significant percentage of patients (14-30%) undergoing mastectomy for breast cancer would not have an intraductal component and therefore MD would not be able to directly visualise malignancy. However, invasive malignancy may cause extrinsic duct compression that can be visualised by MD.21

Future prospects

With greater improvements in the newer generation microendoscopes, it is possible to manoeuvre them into more peripheral sites. The development of a biopsy kit that allows adequate microbiopsies for histological diagnosis is likely to enhance the role MD in breast cancer screening in high-risk women and reduce the need for duct excision in patients with PND due to benign disease. Our group have recently described a reliable mammoscopically-guided intraductal biopsy technique, which also had a therapeutic benefit in 38 (82.6%) of 46 intraductal papillomas.13 The intraductal biopsies were performed using a needle with a side hole passed through a sheath after removal of the mammoscope. Although the technique was effective, however it was not performed under direct visualisation. There is a clear need to develop a reliable biopsy technique (under direct visualisation) and this objective can be achieved by close cooperation between breast specialists and manufacturers.

There is growing evidence that mammary ductal lavage cytology using microcatheters is effective in identifying atypical and malignant cells in high risk women and thus in guiding risk-reducing strategies.23 This has stimulated interest in exploring the potential role of MD in breast screening as a complementary technique to ductal lavage in patients with atypical or malignant cytology. Furthermore, it is likely to complement other non-invasive screening tests which measure electrical impedance or thermovascular changes related to angiogenesis on the surface of the breast,
especially, that these tests are thought to detect mammary carcinogenesis several years earlier than screening mammography.²⁴

MD allows direct visualisation of occult ductal pathology and ductal lavage of abnormal areas. This technique can be combined with the use of molecular and genetic markers of malignancy.²⁵,²⁶ The potential role of MD in the early detection of pre-malignant and malignant disease can be enhanced by combining it with real-time optical biopsy techniques.²⁷ Furthermore, the addition of radiofrequency could lead to curative endoscopic ablation of these lesions.²⁸ These potential applications underscore the need to develop reliable methodology to mark the ducts harboring pathology.

References